400-6699-1171000

分析测试百科网 认证会员,请放心拨打!

首页> 产品展示> Thorlabs保偏光子晶体光纤
非会员

诚信认证:

工商注册信息已核实!

友情链接
裸光纤

Thorlabs保偏光子晶体光纤

品牌 厂商性质 产地 货期
索雷博 一般经销商 欧洲 现货

在线咨询 询底价
AI问答
配套的仪器设备? 可以搭配的相关耗材试剂?
产品介绍

保偏光子晶体光纤


保偏光子晶体光纤

特性

拍长小于4毫米(可能小于1毫米)

100米内偏振消光比(PER)>30dB

温度灵敏度比其它主要的应力双折射光纤低30倍

未掺杂的纯石英纤芯和包层

近似高斯分布的模式轮廓(椭圆度~1.5)

NKT Photonics公司提供保偏(PM)光子晶体光纤,它具有非圆形的纤芯,加上空气与玻璃间的大折射率阶跃,产生强的双折射。这使得拍长更短,相比传统的PM光纤,PM光子晶体光纤可以减小弯曲引起的不同偏振态之间的耦合,也能极大的减小双折射的热敏性。 这些光纤的双折射温度系数比其它的主要应力双折射光纤低30倍。这些出售的光纤是基于其总体的光学规格,而不是其物理特性。

请注意:这些光纤将以两端为密封的形式发货,因为这样可以在存储中避免水分和灰尘进入空心微管中。在使用前需要事先将其切割,例如用我们的S90R红宝石光纤切割器或我们的Vytran™CAC400小型光纤切割器。

规格


Parameter

Value

Mode Field Diameter (Long/ShortAxis for both S- and P-Polarization)

3.6/3.1 µm

Attenuation

< 1 dB/km

Beat Length

< 4 mm

Differential Group Delay

2.25 ns/km

Polarization Extinction Ratio (PER)

30 dB / 100 m (Ø155 mm spool)

Chromatic DispersionS-PolarizationP-Polarization

54
ps/nm/km59
ps/nm/km

Pitch, Λ (Spacing Between Holes)

4.4 µm

Large Hole Diameter

4.5 µm

Small Hole Diameter

2.2 µm

Diameter of Holey Region

40.0 µm

Outside Diameter

125 µm
± 5
μma

Coating Diameter (Single Layer Acrylate)

230 µm
± 10
μm

Core Index

Proprietaryb

Cladding Index

Proprietaryb


a.请注意在对这种光纤添加接头时较大的公差。公差可能会使光纤的直径大于接头的内孔。我们建议使用孔径尺寸为130 µm的接头来确保兼容性。

损伤阀值

激光诱导的光纤损伤

以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的**功率始终受到这些损伤机制的最小值的限制。

虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的绝损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算**程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的**功率水平以下操作光纤元件;如果有元件并未指定**功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。关于特定应用中光纤功率适用能力的深入讨论,请联系技术支持techsupport-cn@thorlabs.com。


Quick Links

Damage at the Air / Glass Interface

Intrinsic Damage Threshold

Preparation and Handling of Optical Fibers


空气-玻璃界面的损伤

空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成**性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。

损伤的光纤端面

未损伤的光纤端面


多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得**耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。


Estimated Optical Power Densities on Air / Glass
Interfacea

Type

Theoretical Damage
Thresholdb

Practical Safe
Levelc

CW(Average Power)

~1 MW/cm2

~250 kW/cm2

10 ns Pulsed(Peak Power)

~5 GW/cm2

~1 GW/cm2


所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。

这是可以入射到光纤端面且没有损伤风险的**功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。

这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。

插芯/接头终端相关的损伤机制

有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。

与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。

为了**程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。

曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。**功率适用性受到所有相关损伤机制的功率水平限制(由实线表示)。



产品型号

公英制通用

PM-1550-01

保偏光子晶体光纤,1550纳米



无截止单模,大模场面积,保偏光子晶体光纤

特性

偏振保持 (PM)

大于100米时偏振消光比 (PER) >18 分贝

模式域直径与波长不相关

无掺杂纯硅纤心和包层

Ø5微米,Ø10微米,和Ø15微米纤心尺寸可供选择

Thorlabs提供精选的无截止单模(ESM),大模式面积(LMA),偏振保持光子晶体光纤(PCF)。常用的单模光纤实际上是波长远短于第二模式截止波长的多模光纤,在很多应用里限制了对我们有用的工作波长。相反,在所有对石英玻璃是是完全穿透的波长下,晶体光纤无截止单模PCFs是单模光纤。

在实际上,对我们有用有用的波长范围只是被弯曲损耗所限制。尽管包层具有六倍对称性,模式的截面依然非常类似于传统的轴对称阶跃折射率型光纤的准高斯基模,这将导致排布重叠率大于90%。与传统光纤不同,这些光纤是用仅仅一种材料制作的:无掺杂的,高纯度的,石英玻璃。偏振保持性能是通过应用双折射效应产生的应力杆来实现的。材料和大模式面积的组合使得它能满足高功率级别透过光纤,并且不会对材料造成损伤或者由光纤的非线性效应造成的副作用。这些出售的光纤是基于其总体的光学规格,而不是其物理特性。

请注意:这些光纤将以两端为密封的形式发货,因为这样可以在存储中避免水分和灰尘进入空心微管中。在使用前需要事先将其切割,例如用我们的S90R红宝石光纤切割器或我们的Vytran™
CAC400小型光纤切割器。


规格

Item #

LMA-PM-5

LMA-PM-10

LMA-PM-15

Optical Properties

Mode Field Diametera

4.2 ± 0.5 μm @ 532 nm

4.4 ± 0.5 μm @ 1064 nm

8.4 ± 1.0 μm @ 532 nm

8.6 ± 1.

Thorlabs保偏光子晶体光纤信息由江阴韵翔光电技术有限公司 为您提供,如您想了解更多关于Thorlabs保偏光子晶体光纤报价、型号、参数等信息,欢迎来电或留言咨询。

注:该产品未在中华人民共和国食品药品监督管理部门申请医疗器械注册和备案,不可用于临床诊断或治疗等相关用途