400-6699-1171000

分析测试百科网 认证会员,请放心拨打!

首页> 产品展示> Thorlabs多模光纤跳线,方形纤芯
非会员

诚信认证:

工商注册信息已核实!

光纤跳线

Thorlabs多模光纤跳线,方形纤芯

品牌 厂商性质 产地 货期
索雷博 一般经销商 欧洲 现货

在线咨询 询底价
产品介绍


多模光纤跳线,方形纤芯

特性

方形纤芯的多模光纤跳线,数值孔径0.39

纯石英纤芯尺寸150 µm x 150 µm

硬聚合物包层Ø225 µm

波长范围400 - 2200 nm

两端有2.0 mm窄键FC/PC或SMA905接头

外有FT030
Ø3 mm松套管

提供焦比衰退(FRD)少或扰模增益高的版本(更多信息,请看应用标签)

非常适合成像和天文光谱学应用

定制长度或接头配置,详情请联系技术支持

制造这些多模光纤跳线使用的是150 µm x 150 µm 方形石英纤芯的光纤,而不是圆形纤芯的光纤。纤芯的方形有助于光纤中的模式混合,从而产生均匀的空间分布、正方形的光束形状以及平顶截面轮廓(在输出端)。为了在远场距离保持方形的光束,需要使用准直器对纤芯成像(请看右图)。该光束轮廓的形状还可以改善激光二极管或LED的耦合,因为它们具有矩形发射面。

本页出售的所有光纤跳线都非常适合通用或成像应用;但这些跳线也包含其他特性,这些特性对天文光谱学非常重要。具体来说,方形和其他非圆形纤芯的跳线可以减少焦比衰退(FRD),改善扰模增益。这些跳线具有优化了FRD或扰模增益性能的两种版本。这些光纤跳线使用低应力环氧树脂粘合终端,使跳线的FRD比圆形纤芯光纤跳线的FRD少。对高扰模增益感兴趣的客户,可以考虑M102L05和M103L05光纤跳线,它们由于长度较长而具有高扰模增益。方形纤芯与圆形纤芯光纤跳线的FRD与扰模增益的典型测量,请看应用标签。

光纤跳线的两端可以为2.0 mm窄键FC/PC或SMA905接头。对于SMA905终端的跳线,所刻黑线用于对准纤芯的平边;对于FC/PC终端的跳线,接头键对准纤芯的平边(请看右图)。每根光纤跳线包含两个防尘帽,可以防止跳线末端受到灰尘影响和其他损害。我们也单独出售额外的CAPF塑料防尘帽和CAPFM金属螺纹防尘帽,用于FC/PC终端,以及CAPM橡胶防尘帽和CAPMM金属螺纹防尘帽,用于SMA905终端。我们也可以定制不同的长度或接头配置,详情请联系技术支持。

这些光纤跳线并不适合需要光纤承载高光功率的应用,因为过高的功率可能会过度加热接头中使用的环氧树脂(更多信息,请看损伤阈值标签)。我们也提供方形纤芯的裸纤,不包含任何环氧树脂,可以在功率较高的环境下使用。

使用M97L02光纤跳线(左图)与M29L02 Ø200 µm纤芯的光纤跳线(右图)的准直输出比较。M625F2光纤耦合LED用作光源。


利用透镜扩束测量的平顶光束轮廓


接头有黑色标记(SMA905接头)或对准键(FC/PC接头),用于对准纤芯的一条平边。



In-Stock Multimode Fiber Optic Patch Cable Selection

Step Index

Graded Index

Fiber Bundles

Uncoated

Coated

Mid-IR

Optogenetics

Specialized
Applications



SMA

FC/PC


FC/PC to SMA


Square-Core FC/PC and SMA

AR-Coated SMA

HR-Coated FC/PC


Beamsplitter-Coated FC/PC

Fluoride FC and SMA

Lightweight FC/PC

Lightweight SMA


Rotary Joint FC/PC and SMA

High-Power SMA

UHV, High-Temp. SMA


Armored SMA


Solarization-Resistant SMA

FC/PC

FC/PC to LC/PC



规格:


Bare Fiber Item #

Wavelength

Range

Hydroxyl

Content

Core Size

Cladding

Diameter

Coating

Diameter

Core / Cladding

Coating

Stripping Tool

Proof Test

FP150QMT

400 - 2200 nm

Low OH

150 ± 10 µm x 150 ± 10 µm

225 ± 5 µm

500 ± 30 µm

Pure Silica /

Hard Polymer

Tefzel

T12S21

≥50 kpsi





Bare Fiber Item #

NA

Core Index @ 589.3 nm

Cladding Index @ 589.3 nm

Attenuation (Click for
Plot)

Core Offset

Bend Radius

Operating

Temperature

Short Term

Long Term


FP150QMT

0.39

1.458965

1.3651

20 dB/km @ 803 nm (Max)

6 µm (Max)

20 mm

40 mm

-40 to 150 °C


应用

方形纤芯的光纤适合多种应用,包括:天文学、激光加工、皮肤病学设备和生物医学成像。下面的例子展现了这些光纤相对于传统圆形纤芯光纤而具有的独特优势。

平坦的光束轮廓

方形纤芯的光纤具有一个明显的特点,那就是它在纤芯区域产生的是强度均匀的光束,而不是圆形纤芯的光纤通常产生的高斯光束轮廓。这是因为,纤芯的方形有助于光在光纤中传播时实现模式混合,从而使输出光束的空间模式均匀分布。

方形纤芯的光纤非常适合激光加工应用,无需光束整形光学元件或掩模,就可以形成尖角或进行边缘切割;这种光纤也适合成像应用,方形光束轮廓可以更好地适应矩形CCD阵列的形状。请注意,光束一旦离开光纤,光束形状就无法保持,因此,需要准直器对纤芯成像,以保持光束在自由空间中的形状。

使用透镜扩展由530 nm LED光源从单模光纤发射到测试光纤的光束,并测量光束轮廓。


天文应用

对恒星和天文光谱学感兴趣的客户,这种方形纤芯的光纤还有几种优于圆形纤芯光纤的特点。

焦比衰退(FRD)少多模光纤跳线适用于天文应用,尤其常用于建立多天体分光(MOS)系统,可以在望远镜的视场内同时观察多个天体的光谱。光纤的小视场只能捕捉目标天体发出的光,周围天体产生的噪声很小。由于微弯曲以及安装接头时终端对光纤产生的应力,光纤输出端的焦比(也就是f/#)会低于输入端,而光束角度在输出端会变大。这种现象也就是所谓的焦比衰退(FRD),输出光束角度变宽,会导致光谱分辨率降低,在探测器上的采光量减少。FRD通过输入f/#与输出f/#的比值来计算。

Thorlabs方形纤芯的光纤可以大程度地减少终端应力和焦比衰退。为了证明这点,我们测试了三种光纤,其终端由低应力环氧树脂粘合,并在40 °C下经过4小时固化。如右图所示,与FT200EMT(Ø200 µm纤芯)和FT300EMT(Ø300 µm 纤芯)光纤相比,使用FP150QMT方形纤芯光纤的跳线焦比衰退更低(即,输入端与输出端的焦比差异更小)。

在530 nm处的FRD测量FP150QMT:150 µm x 150 µm方形纤芯FT200EMT:Ø200 µm圆形纤芯FT300EMT:Ø300 µm圆形纤芯

扰模增益恒星光谱学中也使用多模光纤。观察到的恒星的细微运动会导致所测光谱的变化,这是一种测量噪声的来源。加强扰模可以降低光纤对这些波动的灵敏度。"扰模增益"可以量化光纤对这些扰动的灵敏度,被定义为光纤输入端点光源的位移与光纤输出端所测光束位移的比值。扰模增益值越高,表示点光源波动对光纤输出的影响越小。

有好几种方法可以改善光纤中的扰模增益。一般而言,使用较长的光纤可以提高扰模增益,但是,光纤的总透射率也会降低。而方形纤芯的光纤改善扰模增益不需要使用较长的光纤。如左表所示,使用方形纤芯的Thorlabs光纤跳线的扰模增益高于类似圆形纤芯的光纤跳线。


Scrambling Gain for Different Fiber Typesa

Fiber
Length

Fiber Type

Core

注:该产品未在中华人民共和国食品药品监督管理部门申请医疗器械注册和备案,不可用于临床诊断或治疗等相关用途